Методические рекомендации по суммативному оцениванию

Физика

8 класс

Методические рекомендации составлены в помощь учителю при планировании, организации и проведении суммативного оценивания за раздел по предмету «Физика» для обучающихся 8 классов.

Задания для суммативного оценивания за раздел/сквозную тему позволят учителю определить уровень достижения обучающимися целей обучения, запланированных на четверть.

Для проведения суммативного оценивания за раздел/сквозную тему в методических рекомендациях предлагаются задания, критерии оценивания с дескрипторами и баллами. Также в сборнике описаны возможные уровни учебных достижений обучающихся (рубрики). Задания с дескрипторами и баллами носят рекомендательный характер.

Методические рекомендации предназначены для учителей, администрации школ, методистов отделов образования, школьных и региональных координаторов по критериальному оцениванию и других заинтересованных лиц.

При подготовке методических рекомендаций использованы ресурсы (рисунки, фотографии, тексты, видео- и аудиоматериалы и др.), находящиеся в открытом доступе на официальных интернет-сайтах.

СОДЕРЖАНИЕ

1 ЧЕТВЕРТЬ	4
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА РАЗДЕЛ	4
Суммативное оценивание за раздел «Тепловые явления»	4
Суммативное оценивание за раздел «Агрегатные состояния вещества»	
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА РАЗДЕЛ	
Суммативное оценивание за раздел «Основы термодинамики»	12
Суммативное оценивание за раздел «Основы электростатики» 3 ЧЕТВЕРТЬ	
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА РАЗДЕЛ	
Суммативное оценивание за раздел «Постоянный электрический ток»	19
Суммативное оценивание за раздел «Электромагнитные явления»	
ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА РАЗДЕЛ	
Суммативное оценивание за раздел «Световые явления»	27

1 ЧЕТВЕРТЬ ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА РАЗДЕЛ

Суммативное оценивание за раздел «Тепловые явления»

Цель обучения

- 8.3.1.2 представлять температуру в разных температурных шкалах (Кельвин, Цельсий)
- 8.3.2.5 определять количество теплоты, полученной или

отданной в процессе теплопередачи

- 8.3.2.7 применять формулу количества теплоты, выделяемого при сгорании топлива, в решении задач
- 8.3.2.6 объяснить физический смысл удельной теплоемкости
- 8.3.2.9 применять уравнение теплового баланса при

решении задач

Критерий оценивания

Обучающийся

- Характеризует способы измерения температуры
- Характеризует процесс теплопередачи
- Использует формулу количества теплоты, выделяемого при сгорании топлива, в решении задач
- Описывает изменение количества теплоты и изменение температуры, основываясь на физическом смысле удельной теплоемкости
- Использует уравнение теплового баланса при решении задач

Уровни мыслительных

Применение

Навыки высокого порядка навыков

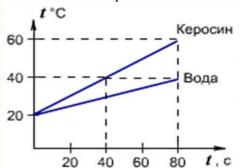
Время выполнения

25 минут

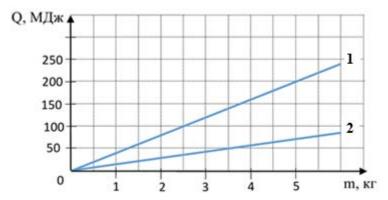
Задания

- 1. Рассмотрите изображение термометра, показывающего температуру некоторого тела в градусах Цельсия.
 - а) Чему равна цена деления термометра?

[1]


b) Чему равна температура t предмета?

- [1]
- с) Запишите данное показание термометра в градусах Кельвина.



- 2. Рассмотрите график. Масса воды и керосина одинакова.
 - а) Как изменятся температура керосина через каждые 40 секунд?
- [1] [1]
- b) Сколько времени потребовалось для нагревания воды на 20 градусов?

3. Рассмотрите график зависимости количества теплоты, выделяющегося при сгорании топлива, от массы топлива. Определите по таблице, данной ниже, для каких видов топлива эти графики.

Вещество	q, МДж/кг	Вещество	q, МДж/кг
Порох	3,8	Мазут	40,6
Дрова сухие	10	Дизельное топливо	43
Торф	14	Топливо реактивных самолетов (TC- 1)	43
Caxap	17	Природный газ	44
Уголь каменный	27	Нефть	44
Спирт	27	Бензин	46
Кокс	29,3	Керосин	46
Антрацит	30	Ацетилен	50
Древесный уголь	34	Водород	120

[3]

4. Тела из меди и железа равной массы получили одинаковое количество теплоты. Определите какое из них нагреется до более высокой температуры. Удельная теплоемкость меди $380 \, \text{Дж/(кг} \, ^{\circ}\text{C})$, удельная теплоемкость железа $460 \, \text{Дж/(кг} \, ^{\circ}\text{C})$.

[2]

5. В калориметре находится 1 кг воды при температуре 20 $^{\rm o}$ С. В воду опускают свинцовую деталь массой 2 кг, имеющую температуру 90 $^{\rm o}$ С. Рассчитайте до какой температуры нагреется вода. (Потерями теплоты в калориметре пренебречь). Удельная теплоемкость свинца 140 Дж/(кг· $^{\rm o}$ С)

[3]

Итого: 13 баллов

Критерий оценивания	№	Дескрипторы	Балл
-	задан	Обучающийся	
	ия		
Характеризует способы	1	Определяет цену деления термометра;	1
измерения температуры		Определяет температуру тела в градусах	1
		Цельсия;	
		Переводит температуру тела из градусов	1
		Цельсия в градусы Кельвина;	
Характеризует процесс	2	Определяет изменение температуры	1
теплопередачи		керосина за определенное время;	
		Определяет время нагревания воды;	1
Использует формулу	3	Определяет по первому графику удельную	1
количества теплоты,		теплоемкость вещества;	
выделяемого при		Определяет по второму графику удельную	1
сгорании топлива, в		теплоемкость вещества;	
решении задач		Определяет по таблице вид топлива;	1
		-	1
Описывает изменение количества теплоты и	4	Использует формулу количества теплоты;	1
изменение температуры,		Определяет тело, нагревшееся больше;	1
основываясь на			
физическом смысле			
удельной теплоемкости			
Использует уравнение	5	Составляет уравнение теплового баланса для	1
теплового баланса при		данной задачи;	
решении задач		Выводит формулу для расчета температуры	1
		воды;	1
		Определяет температуру нагретого тела.	1
Всего баллов	ı	, , ,	13

Рубрика для предоставления информации родителям по итогам суммативного оценивания за раздел «Тепловые явления»

эа раздел «Тепл ФИО обучающегося

T2 V	Уровень учебных достижений			
Критерий оценивания	Низкий	Средний	Высокий	
Характеризует способы	Затрудняется характеризовать	Допускает ошибки при определении	Правильно характеризует способы	
измерения температуры	способы измерения	температуры тела в градусах Цельсия/ при	измерения температуры.	
Характеризует процесс	температуры.	переводе температуры тела из градусов		
теплопередачи		Цельсия в градусы Кельвина.		
Использует формулу	Использует затруднения при	Допускает ошибки при определении из	Верно описывает график и правильно	
количества теплоты,	использовании формулу	графика удельную теплоемкость вещества	находит виды топлива.	
выделяемого при сгорании	колическтва теплоты при	и вид топлива.		
топлива, в решении задач	сгорании топлива.			
Описывает изменение	Испытывает затруднения при	Допускает ошибки при использовании	Верно объясняет процесс изменения	
количества теплоты и	объяснении процесса	формулы количества теплоты.	температуры, использует удельную	
изменение температуры, основываясь на	изменения температуры.		теплоемкость в качестве обоснования.	
физическом смысле				
удельной теплоемкости				
Использует уравнение	Испытывает затруднения при	Допускает ошибки при выводе формулы	Верно составляет уравнение теплового	
теплового баланса при	составлении уравнении	для расчета температуру нагретого тела и	баланса.	
решении задач	теплового баланса.	при составлении уравнение теплового		
		баланса.		

Суммативное оценивание за раздел «Агрегатные состояния вещества»

Цель обучения

8.3.2.7 - применять формулу количества теплоты, поглощаемого / выделяемого при плавлении /кристаллизации, в решении задач

8.3.2.11 - анализировать график зависимости температуры

от времени при плавлении и кристаллизации

8.3.2.13 - анализировать график зависимости температуры

от времени при парообразовании и конденсации

Критерий оценивания

Обучающийся

• Определяет количество теплоты при изменениях агрегатных состояний вещества

• Описывает графики зависимости температуры от времени и температуры при изменении агрегатных состояний вешества.

Уровни мыслительных навыков

Навыки высокого порядка

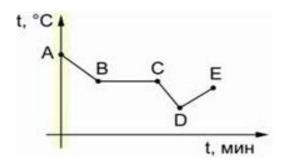
Время выполнения

25 минут

Задания

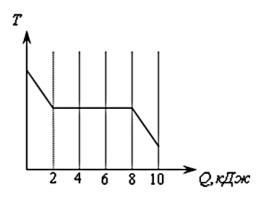
1. Определите удельную теплоту парообразования вещества массой 0,2 кг, если для его обращения в пар было затрачено 6000 Дж.

[2]

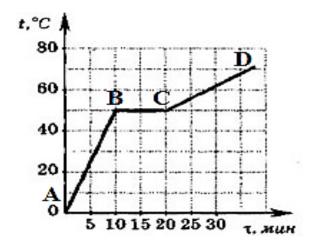

- **2.** Дан кусок льда, массой 100 г при температуре -10 °C. Удельная теплоемкость льда 2100 Дж/(кг \cdot °C), удельная теплота плавления льда 3,34 Дж/кг, температура плавления льда 0 °C
- а) Определите количество теплоты, необходимое для нагревания льда до температуры плавления.

[2]

b) Определите количество теплоты, необходимое для плавления льда, взятого при температуре плавления.


[2]

3. Определите участок графика, который соответствует конденсации вещества. Первоначально вещество находится в газообразном состоянии.


[1]

4. Рассмотрите график зависимости температуры первоначально жидкого серебра от количества выделенной им теплоты. Определите количество теплоты выделившееся при кристаллизации серебра.

[1]

5. Тело из парафина равномерно нагревали в течении определенного промежутка времени. Рассмотрите график зависимости температуры данного тела от времени.

а) Какую температуру имело тело в начале наблюдения?

[1]
b) Какой процесс описывается отрезком AB?
[1]
c) Какой процесс описывается отрезком BC?
[1]
d) При какой температуре начался процесс плавления тела?
[1]
e) Сколько времени длился процесс плавления?
[1]
f) Изменялась ли температура тела во время плавления?
[1]
g) Какую температуру имело тело в конце наблюдений?
[1]

Итого: 15 баллов

Критерий оценивания	№	Дескрипторы	
	задания	Обучающийся	
Определяет количество		Применяет формулу для нахождения	1
теплоты при	1	удельной теплоты парообразования;	
изменениях агрегатных		Выражает значение удельной теплоты	1
состояний вещества		парообразования;	
	2	Применяет формулу количества теплоты для	1
		нагревания тела;	
		Определяет количество теплоты,	1
		необходимое для нагревания льда до	
		температуры плавления;	
		Применяет формулу количества теплоты для	1
		плавления тела;	
		Определяет количество теплоты,	1
		необходимое для плавления льда;	
Анализирует графики	3	Определяет участок графика, соответ-	1
зависимости		ствующий конденсации вещества;	
температуры от	4	Определяет на графике участок,	1
времени и температуры при изменении		соответствующий процессу кристаллизации;	
агрегатных состояний	5	Определяет начальную температуру тела;	1
вещества		Описывает процесс на отрезке АВ;	1
		Описывает процесс на отрезке ВС;	1
		Определяет температуру начала плавления	1
		тела;	
		Определяет время плавления;	1
		Описывает изменение температуры тела в	1
		процессе плавления;	
		Определяет конечную температуру тела.	1
Всего баллов			15

Рубрика для предоставления информации родителям по итогам суммативного оценивания за раздел «Агрегатные состояния вещества»

ФИО обучающегося

Критерий оценивания	Уровень учебных достижений				
	Низкий	Средний	Высокий		
Определяет количество теплоты	Испытывает затруднения при	Применяет формулы количества	Правильно определяет		
при изменениях агрегатных	применении формул для	теплоты при нагревании,	количество теплоты при		
состояний вещества	определения количества теплоты	плавлении, испарении, допускает	нагревании и плавлении.		
	при нагревании, плавлении.	ошибки при вычислении			
		количества теплоты при			
		нагревании / плавлении.			
Анализирует графики	Испытывает затруднения при	Допускает ошибки при	Правильно определяет тепловые		
зависимости температуры от	определении температуры и	определении процессов	процессы по графику, делает		
времени и температуры при	тепловых процессов по графику.	нагревания / плавления тела.	вывод об изменении температуры		
изменении агрегатных состояний			тела во время плавления.		
вещества					

2 ЧЕТВЕРТЬ ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА РАЗДЕЛ

Суммативное оценивание за раздел «Основы термодинамики»

Цель обучения 8.3.2.17 - объяснять первый закон термодинамики.

8.3.2.18 - объяснять второй закон термодинамики

8.3.2.19 - определять коэффициент полезного действия

теплового двигателя

Критерий оценивания Обучающийся

- Использует первый закон термодинамики для объяснения термодинамических процессов
- Применяет первый закон термодинамики при решении задач
- Формулирует второй закон термодинамики
- Решает задачи на вычисления КПД

Уровни мыслительных

Применение

навыков

Время выполнения 20 минут

Задания

1. Определите в каком случае увеличивается внутренняя энергия гири: в случае поднятия ее на 2 метра, или при нагревании на $^{\circ}$ C.

[1]

2. Найдите, насколько изменилась внутренняя энергия газа, если в тепловом двигателе газ получил 300 Дж тепла и совершил работу 36 Дж.

[2]

- **3.** Определите изменение внутренней энергии газа, если ему передано количество теплоты 300 Дж и внешние силы совершили работу 500 Дж.
 - А) 800 Дж
 - В) 200 Дж
 - С) 0 Дж
 - D) 800 Дж

[1]

4. Сформулируйте второй закон термодинамики.

[1]

5. В тепловом двигателе температура холодильника составляет 273 K, а температура нагревателя равна 3073 K. Определите максимальный возможный КПД такого двигателя (в %).

[2]

Итого: 7 баллов

Критерий оценивания	ания № Дескрипторы		Балл
	задания	Обучающийся	
Использует первый закон термодинамики для объяснения термодинамических процессов	1	Определяет случаи, при котором увеличивается внутренняя энергия гири;	1
Применяет первый закон термодинамики	2	Использует первый закон термодинамики при решении задач;	1
при решении задач		Вычисляет внутреннюю энергию газа;	1
	3	Определяет изменение внутренней энергии газа;	1
Формулирует второй закон термодинамики	4	Записывает второй закон термодинамики;	1
Решает задачи на вычисления КПД	5	Использует формулу для нахождения КПД;	1
		Вычисляет КПД двигателя.	1
Всего баллов:	•		7

Рубрика для предоставления информации родителям по итогам суммативного оценивания за раздел «Основы термодинамики»

ФИО обучающегося	
	- -

	Уровень учебных достижений		
Критерий оценивания	Низкий	Средний	Высокий
Использует первый закон термодинамики для объяснения термодинамических процессов	Затрудняется объяснить термодинамический процесс с точки зрения первого начала термодинамики применительно к изопроцессам.	Допускает ошибки при объяснении термодинамических процессов.	Правильно использует первое начало термодинамики.
Применяет первый закон термодинамики при решении задач	Затрудняется применять первый закон термодинамики для вычисления необходимых параметров.	Применяет первый закон термодинамики, допускает ошибки в расчетах.	Правильно использует первый закон термодинамики.
Формулирует второй закон термодинамики	Испытывает затруднения в формулировке и объяснении второго закона термодинамики.	Допускает ошибки при формулировке закона.	Формулирует второй закон термодинамики.
Решает задачи на вычисления КПД	Затрудняется применить теоретические знания для перевода единиц в СИ и расчете КПД.	Применяет формулу для нахождения КПД, допускает небольшие ошибки в расчетах.	Использует формулу для нахождения КПД двигателя и производит верные вычисления.

Суммативное оценивание за раздел «Основы электростатики»

Цель обучения

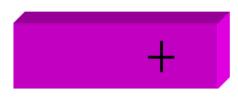
- 8.4.1.2 объяснять процесс электризации тела трением, соприкосновением и индукцией
- 8.1.4.7 изображать графически электрическое поле посредством силовых линий.
- 8.4.1.6 объяснять физический смысл понятия электрическое поле и определять его силовую характеристику
- 8.4.1.5 применять закон Кулона при решении задач

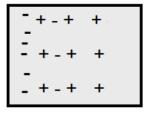
Критерий оценивания

Обучающийся

- Описывает процесс электризации тела
- Показывает направление силовых линий поля, созданного заряженным телом
- Характеризует понятие электрического поля и вычисляет его напряженность
- Применяет закон Кулона для решения задач

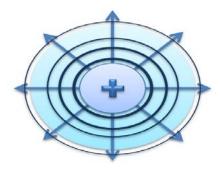
Уровни мыслительных навыков


Применение


Время выполнения

25 минут

Задания


1. Объясните, какой способ электризации использован на рисунке.

[1]

2. Выберите два правильных варианта ответа, чтобы охарактеризовать рисунок, расположенный ниже.

- А) Электрическое поле заряда ослабевает по мере удаления от заряда
- В) Линии электрического поля имеют круговой характер
- С) Линии электрического поля распространяются во все стороны от заряда
- D) Только положительный заряд обладает электрическим полем

[2]

3. На заряд $q' = 3 \cdot 10^{-7} \, \text{K}$ л, который находится в точке C действует сила 0,035 H электрического поля создаваемый отрицательным электрическим зарядом -q. Определите какова напряженность поля в точке C.

• -q

4. В вакууме, на расстоянии 20 см расположены два заряда $3 \cdot 10^{-9}$ Кл и $-4 \cdot 10^{-8}$ Кл. Найдите силу, с которой взаимодействуют эти заряды.

[2]

[2]

Итого: 7 баллов

Критерий	№	Дескрипторы	Балл
оценивания	задания	Обучающийся	
Описывает процесс электризации тела	1	Описывает способ электризации по рисунку;	1
Показывает направление силовых линий поля, созданного заряженным телом	2	Выбирает два ответа характеризующий рисунок;	2
Характеризует понятие	3	Применяет формулу для вычисления напряженности электростатического поля;	1
электрического поля и вычисляет его напряженность		Определяет напряженность электростатического поля в точке C;	1
Применяет закон	4	Применяет формулу закона Кулона;	1
Кулона для решения задач		Определяет силу взаимодействия между зарядами.	1
Всего баллов			7

Рубрика для предоставления информации родителям по итогам суммативного оценивания за раздел «Основы электростатики»

за раздел «Основь ФИО обучающегося

Критерий оценивания		Уровень учебных достижений	
	Низкий	Средний	Высокий
Описывает процесс	Затрудняется при определении и	Допускает ошибки при определении /	Правильно определяет и объясняет
электризации тела	объяснении способа электризации.	объяснении способа электризации	способ электризации.
		рисунке.	
Показывает	Затрудняется перечислить	Допускает ошибки находя только одну	Правильно определяет характеристики
направление силовых	характеристики электрического	характеристику силового поля.	силового поля.
линий поля, созданного заряженным телом	поля.		
V	II	П	D
Характеризует понятие	Испытывает затруднение при	Допускает ошибки в изображении	Верно изображает силовые линии
электрического поля и	вычислении напряженности	силовых линий электрического поля,	электрического поля, созданного
вычисляет его	электростатического поля.	созданного системой двух зарядов / в	системой двух зарядов и определяет
напряженность		определении направления силовых	направление силовых линий.
		линий.	
Применяет закон	Испытывает затруднения при	Применяет формулу закона Кулона	Правильно применяет закон Кулона для
Кулона для решения	применении закона Кулона для	для зарядов, но допускает ошибки в	зарядов, вычисляет силу в системе СИ.
задач	зарядов.	вычислении.	

3 ЧЕТВЕРТЬ ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА РАЗДЕЛ

Суммативное оценивание за раздел «Постоянный электрический ток»

Цель обучения

8.4.2.2 - применять условные обозначения элементов электрической цепи при графическом изображении электрических схем

8.4.2.11 - рассчитывать электрические цепи, используя закон Ома для участка цепи в последовательном и

параллельном соединении проводников

8.4.2.13 - применять закон Джоуля-Ленца при решении

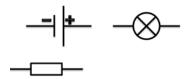
задач

Критерий оценивания

Обучающийся

- Использует элементы электрической цепи в электрических схемах
- Применяет формулы физических величин для расчетов параметров электрической цепи
- Применяет законы постоянного тока для нахождения энергетических параметров тока

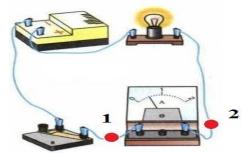
Уровни мыслительных навыков


Применение

Время выполнения

25 мин

Задание


1. Определите элементы электрической цепи есть среди указанных на рисунке?

1) Лампочка; 2) Резистор; 3) Транзистор; 4) Конденсатор; 5) Источник тока; 6) Реостат.

[3]

2. Рассмотрите изображение и определите в каком направлении течет ток через амперметр при замкнутой цепи?

- А) От точки 1 к точке 2
- В) От точки 2 к точке 1
- С) Нет правильного ответа

[1]

3. Определите цену деления каждого прибора и укажите, на каком рисунке цена деления прибора больше.

рис.1 рис.2 рис.3

- А) Рисунок 1
- В) Рисунок 2
- С) Рисунок 3
- D) Рисунки 1 и 3 цена деления одинакова

[1]

- **4.** Проводник сделан из алюминия, имеет длину 2 см и площадь поперечного сечения $0.2~{\rm km}^2$. (Удельное сопротивление алюминия равно $2.8\cdot10^{-8}~{\rm Cm\cdot m}$). Проводник включен в цепь постоянного тока напряжением $40~{\rm B}$.
 - 1) Запишите формулу и определите сопротивление проводника

[2]

2) Запишите формулу и определите силу тока в проводнике

[2]

5. В течение 10 мин по некоторому участку протекает электрический ток, значение которого 0,25 А. Напряжение на этом участке 4 В. Определите работу электрического тока, произведенную за это время.

[2]

Итого: 11 баллов

Критерий	№	Дескрипторы	Балл
оценивания	задан	Обучающийся	
	ия		
Использует	1	Указывает три элемента электрической цепи из	3
элементы		рисунка;	
электрической цепи	2	По рисунку определяет полюса источника тока;	1
в электрических			
схемах	3	Определяет цену деления каждого прибора;	1
Применяет формулы		Применяет формулу сопротивления проводника;	1
физических величин		Вычисляет сопротивление проводника;	1
для расчетов	4	Применяет формулу силы тока;	1
параметров		D. www.aran avery mayor	1
электрической цепи		Вычисляет силу тока;	1
Применяет законы		Применяет формулу для нахождения работы тока;	1
постоянного тока			
для нахождения	5		
энергетических		Определяет работу электрического тока.	1
параметров тока			
Всего баллов			11

Рубрика для предоставления информации родителям по итогам суммативного оценивания за раздел «Постоянный электрический ток»

за раздел «Постоянн ФИО обучающегося

	Уровень учебных достижений		
Критерий оценивания	Низкий	Средний	Высокий
Использует элементы	Затрудняется в определении	Допускает ошибки при определении	Правильно определяет все
электрической цепи в	элементов электрической цепи.	некоторых элементов электрической	элементы цепи.
электрических схемах		цепи.	
Применяет формулы	Затрудняется в применении и расчете	Применяет формулы физических величин	Правильно применяет формулы и
физических величин для	параметров электрической цепи.	для расчетов параметров электрической	вычисляет параметры цепи.
расчетов параметров		цепи, но допускает ошибки при	
электрической цепи		вычислениях.	
Применяет законы	Испытывает затруднения при записи	Допускает ошибки при применении	Правильно записывает законы и
постоянного тока для	закона Джоуля-Ленца и применении	закона Джоуля-Ленца.	производит расчеты.
нахождения	формулы для вычисления работы		
энергетических параметров тока	тока.		

Суммативное оценивание за раздел «Электромагнитные явления»

Цель обучения

8.4.3.1 - характеризовать основные свойства магнитов и графически изображать магнитное поле посредством силовых линий

8.4.3.3 - определять направление линий поля вокруг

прямого проводника с током и соленоида

8.4.3.6 - объяснять устройство и работу электродвигателя и

электроизмерительных приборов

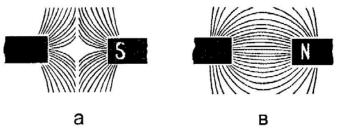
8.4.3.7 - описывать явление электромагнитной индукции

Критерий оценивания

Обучающийся

- Характеризует основные свойства магнитного поля
- Определяет направление силовых линий магнитного поля проводников различных конфигураций
- Описывает устройство электродвигателя
- Указывает случаи проявления электромагнитной индукции

Уровни мыслительных навыков


Применение

Продолжительность

25 минут

Задание

1. Рассмотрите изображение магнитных полей между полюсами магнитов, полученные с помощью железных опилок. Определите полюс левого магнита в первом и во втором случае.

2. На рисунке показаны линии магнитного поля, которое было создано проводником с током. Определите каким может быть направление тока в проводнике. Выберите два

варианта ответа из предложенных.

- А) За чертеж (от нас)
- В) Из чертежа (на нас)
- С) Вправо
- D) Влево

[2]

[2]

3. Сопоставьте с помощью линий понятия и определения.

Электродвигатель	Металлический стержень внутри
	катушки с током
Электромагнит	Источник тока
Сердечник	Устройство, использующее
	взаимосвязь электричества и
	магнетизма
Аккумулятор	Катушка с током и металлическим
	стержнем внутри

[4]

- 4. Выберите явление, которое используется в устройстве электродвигателя.
 - А) вращение рамки в магнитном поле
 - В) вращение рамки с током в электрическом поле
 - С) вращение рамки с током в магнитном поле
 - D) вращение рамки с током в электростатическом поле

[1]

- **5.** Имеются две одинаковых катушки. В первую катушку помещен неподвижный магнит, а из второй катушки выдвигают магнит. Выберите в какой катушке возникнет индукционный ток.
 - А) в первой катушке
 - В) во второй катушке
 - С) в обеих катушках
 - D) ни в одной катушке

[1]

Итого: 10 баллов

Критерий оценивания	№	№ Дескрипторы	
	задания	Обучающийся	Балл
Характеризует основные свойства магнитного поля	1	Указывает полюса магнитов на рисунке;	2
Определяет направление силовых линий магнитного поля проводников различных конфигураций	2	Выбирает два возможных направления тока в проводнике;	2
Описывает устройство электродвигателя	3	Сопоставляет понятия и определения;	4
	4	Указывает явление, которое используется в устройстве электродвигателя;	1
Указывает случаи проявления электромагнитной индукции	5	Определяет случай возникновения индукционного тока в катушке.	1
Всего баллов			10

Рубрика для предоставления информации родителям по итогам суммативного оценивания за раздел «Электромагнитные явления»

эа раздел «Электро ФИО обучающегося

	Уровень учебных достижений		
Критерий оценивания	Низкий	Средний	Высокий
Характеризует основные	Затрудняется в указании	Характеризует магнитные поля, но	Правильно указывает все свойства
свойства магнитного поля	характеристик магнитного поля и	допускает ошибки при определении	магнитных полей и расположение
	взаимодействия полей.	полюсов.	полюсов.
Определяет направление	Затрудняется в определении	Допускает ошибки в определении	Правильно определяет и показывает
силовых линий	характера силовых линий	направления силовых линий.	направление силовых линий.
магнитного поля	магнитного поля вокруг прямого		
проводников различных конфигураций	проводника с током.		
Описывает устройство	Затрудняется в указании принципов	Допускает ошибки в определении	Определяет и указывает принцип
электродвигателя	работы электродвигателя.	принципа работы электроприборов.	работы приборов.
Указывает случаи	Затрудняется в определении и	Допускает ошибку в определении	Правильно указывает случай
проявления	указании проявления	возникновения индукционного	возникновения тока.
электромагнитной	электромагнитной индукции.	тока.	
индукции			

4 ЧЕТВЕРТЬ ЗАДАНИЯ ПО СУММАТИВНОМУ ОЦЕНИВАНИЮ ЗА РАЗДЕЛ

Суммативное оценивание за раздел «Световые явления»

Цель обучения

8.5.1.4 - строить изображение в плоском зеркале и

описывать его характеристики

8.5.1.5 - строить ход лучей в сферических зеркалах для получения изображений тела, характеризовать полученное

изображение

8.5.1.7 - применять закон преломления света при решении

задач

8.5.1.13 - строить ход лучей в тонкой линзе и характеризовать полученные изображения

8.5.1.14 - определять фокусное расстояние и оптическую

силу линзы

Критерий оценивания

Обучающийся

• Получает изображение в плоском зеркале и характеризует его свойства

• Строит и характеризует изображение в сферическом зеркале

• Определяет показатель преломления, используя закон преломления света

• Получает изображение в тонкой линзе и характеризует его свойства

• Решает задачи на определение параметров тонкой

линзы

Уровни мыслительных

навыков

Применение

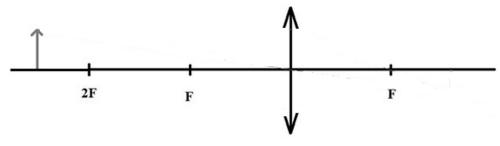
Время выполнения

20 мин

Задания

1. Постройте дальнейший ход лучей в плоских зеркалах, изображенных на рисунке

[2]


2. Постройте изображение предмета в сферическом вогнутом зеркале, если предмет находится перед центром сферы. Дайте характеристику изображения предмета.

3. На поверхность жидкости падает луч под углом 60^{0} . Угол преломления 45^{0} . Определите показатель преломления жидкости. ($\sin 60^{0} \approx 0.86$; $\sin 45^{0} \approx 0.71$)

[2]

4. Постройте изображение предмета и перечислите свойства полученного изображения.

[6]

5. В очках используется рассеивающая линза, фокусное расстояние которой равно $0,25\,\mathrm{M}$. Определите оптическую силу этой линзы.

[2]

Итого: 14 баллов

Критерий оценивания	№ Дескрипторы		Балл
	задания	Обучающийся	
Получает изображение в плоском зеркале и характеризует его свойства	1	Строит ход лучей в плоских зеркалах;	2
Строит и характеризует изображение в	2	Строит изображение в сферическом зеркале;	1
сферическом зеркале		Характеризует полученное изображение;	1
Определяет показатель преломления, используя	3	Применяет формулу закона преломления света;	1
закон преломления света		Вычисляет показатель преломления жидкости;	1
Получает изображение в тонкой линзе и	4	Строит два замечательных луча из трех;	2
характеризует его свойства		Показывает полученное изображение;	1
		Перечисляет свойства изображения;	3
Решает задачи на определение	5	Применяет формулу, связывающую параметры линзы;	1
параметров тонкой линзы		Определяет оптическую силу линзы.	1
Всего баллов			14

Рубрика для предоставления информации родителям по итогам суммативного оценивания за раздел «Световые явления»

за раздел «Свет ФИО обучающегося

	Уровень учебных достижений		
Критерий оценивания	Низкий	Средний	Высокий
Получает изображение в плоском	Затрудняется при использовании	Допускает ошибки при	Правильно использует законы
зеркале и характеризует его	законов отражения, описании	изображении отраженных лучей	отражения.
свойства	изображения в плоском зеркале.	от поверхности зеркало.	
Строит и характеризует	Затрудняется строить и	Строит изображения в	Строит и характеризует
изображение в сферическом	характеризовать изображения в	сферическом зеркале, но	изображение в сферическом
зеркале	сферическом зеркале.	допускает ошибки в	зеркале.
		характеристике изображения	
Определяет показатель	Затрудняется применить закон	Допускает ошибки при	На основе закона преломления
преломления, используя закон	преломления для объяснения	вычислений показателя	света объясняет наблюдаемое
преломления света	наблюдаемых оптических	преломления жидкости.	явление.
	явлений.		
Получает изображение в тонкой	Затрудняется в построении и	Строит изображения, но	Делает построения в тонких
линзе и характеризует его	нахождении параметров линзы.	допускает ошибки при	линзах и находит требуемые
свойства		нахождении основных	параметры линзы.
		параметров тонкой линзы.	
Решает задачи на определение	Затрудняется применить	Применяет формулу,	Применяет формулу,
параметров тонкой линзы	формулу, связывающую	связывающую параметры линзы,	связывающую параметры линзы и
	параметры линзы.	но допускает ошибки в расчетах.	правильно производит
			вычисления.